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Abstract: (+)-Juvabione and (+)-epijuvabione, natural sesquiterpenes exhibiting insect juvenile
hormone activity, have been synthesized from (t)-norcamphor via the both enantiomeric
intermediates having bicyclof3.2.1]octane framework by employing a lipase-mediated kinetic
ester-hydrolysis reaction and cyclopropane ring-expansion reaction as the key steps.
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(+)-Juvabione 1 and (+)-epijuvabione 2 are natural sesquiterpenes exhibiting selective insect juvenile
hormone activity (Fig. 1).' These compounds have two contiguous secondary stereogenic centers on a ring
and a side chain, which make their diastereodivergent synthesis from a single starting material very difficult.> So
far, only one example carried out by us has solved the stereochemical problem to give diastereodivergently these
two diastereomeric natural products using (+)-norcamphor 3 as the starting material.® We wish to report here an
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alternative stereocontrolled construction of these two compounds from racemic norcamphor (1)-3 by employing
lipase-mediated kinetic resolution’ and iterative use of the same ring-expansion in the key stages.
Racemic norcamphor (+)-3 was first transformed into racemic bicyclo[3.2.1]oct-3-en-2-one (£)-7, on
sequential silyl enol ether formation, cyclopropanation, and oxidative ring-expansion reaction,’® in 75% overall
yield (Scheme 1). Reduction of (+)-7 with diisobutylaluminum hydride (DIBAL) gave diastereoselectively the
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Scheme 1 Reagents and conditions: a) LDA, TMSCI, THF, =78 °C (82%); b) CH,l,, Et,Zn, Et,0, reflux (98%); ¢) FeCl,, DMF,
0°C (93%).

endo-alcohol (£)-8. Kinetic transesterification between (+)-8 and vinyl acetate occurred in fert-butyl methyl
ether in the presence of lipase PS to afford the acetate (+)-9 and the alcohol (-)-8 in satisfactory chemical yields,
but their enantiomeric purities were less than satisfactory for practical use. On the other hand, kinetic hydrolysis
of the racemic acetate (+)-9, generated from ()-8, in a phosphate buffer in the presence of the same lipase
afforded the alcohol (+)-8 and the acetate (—)-9, in satisfactory chemical and enantiomerical yields, which were
used for the following synthesis. The alcohol (+)-8 gave the enone (+)-7, [a],?® +362.1 (¢ 0.6, CHCL,) {lit.*;
[a],” +359.2 (c 1.64, CHCL,)}, on Dess-Martin oxidation,® while the acetate (-)-9 gave the enantiomeric enone
(-)-7, [a],” -339.0 (c 2.8, CHCLy) {lit.": [a],”® -346.2 (¢ 1.55, CHCL,)}, on sequential K,CO,-mediated
methanolysis and Dess-Martin oxidation. Both enantiomers of the enone 7 were identical with the authentic
materials obtained from (+)-norcamphor.’ Enatiomeric purities of the resolved products were estimated for both
as >95% ee at this stage by HPLC of both enantiomers of 7 thus obtained using a chiral column (CHIRALCEL
OB, iPrOH-hexane 1:200) (Scheme 2).
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Scheme 2 Reagents and conditions: a) DIBAL, CH,Cl,, -78 °C (85%); b) Ac,0, E;N, DMAP (cat.), CH,Cl, (97%).

To obtain the key intermediate (+)-13 of (+)-juvabione 1, the enone (+)-7 was treated with the cuprate
reagent generated in situ to give diastereoselectively the 1,4-adduct (+)-10, [a],”” +147.1 (¢ 1.0, CHCL,) {lit.*:
[a],” +136.7 (¢ 1.15, CHCL)}, having exo-methyl stereochemistry. The bicyclic ketone (+)-10 was then
transformed into the cyclopentanone (+)-13, [a],” +98.1 (¢ 1.1, CHCL,) {lit.*: [a],* +97.3 (¢ 1.15, CHCL,)},
in 47% overall yield via 11 and 12 by sequential Baeyer-Villiger oxidation, Weinreb amide formation,’
Grignard coupling, ketone protection and oxidation as shown® (Scheme 3).

(+)-10 Mg’ OMe
Scheme 3 Reagents and conditions: a) MeMgl, CuCN, LiCl, THF, - 78°C (95%); b} mCPBA, CH,Cl,, 0 °C;
¢) MeNHOMe-HCl, Me,Al, CH,Cl, (87%, 2 steps); d) iPrCH,MgCl, THF (65%); e) (CH,OH),, pTsOH (cat.), benzene, reflux;
f) PCC, NaOAc, CH,Cl, (86%, 2 steps).
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On the other hand, to obtain the key intermediate (+)-17 of (+)-epijuvabione 2, the enantiomeric enone
(-)-7 was first treated with methyllithium to give the 1,2-adduct 14, [a],”® —68.5 (¢ 1.0, CHCl,). This afforded
the enone 15, [a], +274.0 (¢ 1.3, CHCL,), on oxidation with pyridinium chlorochromate (PCC), which on
catalytic hydrogenation, gave diastereoselectively the bicyclic ketone (+)-16, [a],® +115.4 (¢ 1.0, CHCL,),
having an endo-methyl stereochemistry. Employing exactly the same procedure as for (+)-10, the
diastereomeric ketone (+)-16 was similarly transformed into the diastereomeric cyclopentanone (+)-17, [oz],,27
+87.3 (¢ 1.3, CHC,), in 44% overall yield (Scheme 4).
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Scheme 4 Reagents and conditions: a) MeLi, THF (97%); b) PCC, CH,Cl, (84%); ¢} H, (10%), Pd-C, AcOEt (98%); d) as
Scheme 3 (44%, 5 steps).

Having obtained the two key intermediates, (+)-13 and (+)-17, we examined their transformation into the
target natural products, the former into (+)-juvabione 1 and the latter into (+)-epijuvabione 2, by employing the
cyclopropanation and the ring-expansion reaction that used for the conversion of norcamphor (+)-3 into the
enone precursor (£)-7. Since we could not find appropriate conditions to convert regioselectively both (+)-13
and (+)-17 into the single silyl enol ether products, we decided to use the mixtures consisted of the two regio-
isomers, 18a,b and 19a,b, for the next step without separation. Thus, the 2.6:1 mixture consisted of 18a and
19a gave an inseparable mixture of the cyclopropanes, 20a and 21a, which on treatment with iron(III) chloride®
followed by 1,8-diazabicyclo[5.4.0}undec-7-ene (DBU) afforded the two isomeric cyclohexenones, 22a, [a],”
-13.0 (¢ 0.3, CHCL,), and 23a, [0]," +11.3 (¢ 0.3, CHCL,), in overall yields of 38 and 17% after separation
by silica gel column chromatography. On the same treatment, the 2.8:1 mixture consisted of 18b and 19b
furnished the two isomeric cyclohexenones, 22b, [a],*® -9.7 (¢ 0.6, CHCL,), and 23b, [a],” +52.8 (¢ 0.2,
CHC1,), in overall yields of 37 and 14% after separation (Scheme 5).
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Scheme 5 Reagents and conditions: a) LDA, TMSCI, THF, -78 °C (88% for «: 86% for b); b) CH,1,, Et,Zn, CH,Cl, (80% for a
and b); c) FeCl,, DMF then DBU, CH,Cl, (51% for 22a, 52% for 22b; 22% for 23a, 19% for 23b).
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To obtain the natural products, the 3-substituted cyclohexenones, 22a and 22b, were sequentially
hydrogenated and carbomethoxylated to give the keto-esters, 24a and 24b, which were further transformed into
the cyclohexenecarboxylates,” 26a, [a],” +71.3 (c 0.2, CHCI,), and 26b, [«],” +49.3 (¢ 0.3, CHCL,), by
sequential reduction and dehydration, in overall yields of 48 and 53%, respectively. On the other hand, the 4-
substituted cyclohexenones, 23a and 23b, were treated sequentially with L-selectride and N-(2-
pyridyDtriflimide in the same flask® to give the enol triflates, 27a and 27b. On the palladium-mediated
methoxycarbonylation,” both the triflates, 27a and 27b, furnished the esters, 26a and 26b, identical with those
obtained from 23a and 23b, both in 35% yields. Finally, the esters, 26a and 26b, were acid-hydrolyzed to
give (+)-juvabione 1, [a],,”” +65.2 (c 0.2, benzene) {lit.*: [a],,”” +65.2 (c 0.46, benzene)}, and epijuvabione
(+)-2, [a],” +95.8 (¢ 0.5, benzene) {lit.": [a],® +96.3 (c 0.81, benzene)}, in yields of 84 and 82%,
respectively (Scheme 6).
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Scheme 6 Reagents and conditions: a) H,, 10% Pd-C, AcOEt; b) NaH, (Me0),CO, THF (82% for 24a and 90% for 24b, 2
steps); ¢) NaBH,, MeOH (65% for 25a and 68% for 25b); d) MesCl, Et;N, CH,Cl,; e) DBU, CH,Cl, (90% from 25a and 87% from
25b, 2 steps); f) L-selectride, THF then N-(2-pyridyl)triflimide (71% for 27a and 75% for 27b); g) CO, Pd(OAc), (cat.), PPh,,
Et;N, MeOH, DMF (49% from 27a; 46% from 27b); h) aq. CF,CO,H, CHC, (84% for 1; 82% for 2).

In summary, a new diastereocontrolled route to (+)-juvabione and (+)-epijuvabione has been developed by
lipase-mediated preparation of the key chiral building block having bicyclo[3.2.1]octane framework starting
from racemic norcamphor.
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